首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24166篇
  免费   2212篇
  国内免费   1072篇
电工技术   1458篇
技术理论   2篇
综合类   1542篇
化学工业   3900篇
金属工艺   1383篇
机械仪表   1606篇
建筑科学   2133篇
矿业工程   909篇
能源动力   656篇
轻工业   1419篇
水利工程   421篇
石油天然气   1682篇
武器工业   180篇
无线电   2530篇
一般工业技术   2951篇
冶金工业   1171篇
原子能技术   283篇
自动化技术   3224篇
  2024年   63篇
  2023年   466篇
  2022年   679篇
  2021年   1076篇
  2020年   898篇
  2019年   741篇
  2018年   754篇
  2017年   854篇
  2016年   723篇
  2015年   1003篇
  2014年   1279篇
  2013年   1402篇
  2012年   1634篇
  2011年   1656篇
  2010年   1472篇
  2009年   1323篇
  2008年   1303篇
  2007年   1248篇
  2006年   1299篇
  2005年   1230篇
  2004年   742篇
  2003年   641篇
  2002年   569篇
  2001年   541篇
  2000年   509篇
  1999年   639篇
  1998年   499篇
  1997年   440篇
  1996年   386篇
  1995年   338篇
  1994年   275篇
  1993年   153篇
  1992年   146篇
  1991年   130篇
  1990年   97篇
  1989年   75篇
  1988年   56篇
  1987年   29篇
  1986年   31篇
  1985年   10篇
  1984年   11篇
  1983年   6篇
  1982年   11篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
2.
Bone related diseases have caused serious threats to human health owing to their complexity and specificity. Fortunately, owing to the unique 3D network structure with high aqueous content and functional properties, emerging hydrogels are regarded as one of the most promising candidates for bone tissue engineering, such as repairing cartilage injury, skull defect, and arthritis. Herein, various design strategies and synthesis methods (e.g., 3D-printing technology and nanoparticle composite strategy) are introduced to prepare implanted hydrogel scaffolds with tunable mechanical strength, favorable biocompatibility, and excellent bioactivity for applying in bone regeneration. Injectable hydrogels based on biocompatible materials (e.g., collagen, hyaluronic acid, chitosan, polyethylene glycol, etc.) possess many advantages in minimally invasive surgery, including adjustable physicochemical properties, filling irregular shapes of defect sites, and on-demand release drugs or growth factors in response to different stimuli (e.g., pH, temperature, redox, enzyme, light, magnetic, etc.). In addition, drug delivery systems based on micro/nanogels are discussed, and its numerous promising designs used in the application of bone diseases (e.g., rheumatoid arthritis, osteoarthritis, cartilage defect) are also briefed in this review. Particularly, several key factors of hydrogel scaffolds (e.g., mechanical property, pore size, and release behavior of active factors) that can induce bone tissue regeneration are also summarized in this review. It is anticipated that advanced approaches and innovative ideas of bioactive hydrogels will be exploited in the clinical field and increase the life quality of patients with the bone injury.  相似文献   
3.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
4.
Organic solar cells (OSCs) have recently reached a remarkably high efficiency and become a promising technology for commercial application. However, OSCs with top efficiency are mostly processed by halogenated solvents and with additives that are not environmentally friendly, which hinders large-scale manufacture. In this study, high-performance tandem OSCs, based on polymer donors and two small-molecule acceptors with different bandgaps, are fabricated by solution processing with non-halogenated solvents without additive. Importantly, the two active layers developed from non-halogenated solvents show better phase segregation and charge transport properties, leading to superior performance than halogenated ones. As a result, a tandem OSC with high efficiency of up to 16.67% is obtained, showing unique advantages in future massive production.  相似文献   
5.
Various products, including foods and pharmaceuticals, are sensitive to temperature fluctuations. Thus, temperature monitoring during production, transportation, and storage is critical. Facile indicators are required to monitor temperature conditions via color changes in real time. This study aimed to prepare and apply thiol-functionalized covalent organic frameworks (COFs) as a novel indicator for monitoring thermal history and temperature abuse. The COFs underwent obvious color changes from bright yellow to purple after exposure to different temperatures for varying durations. The reaction kinetics are analyzed under isothermal conditions, which reveal that the order of reaction rates is k−20°C < k4°C < k20°C < k35°C < k55°C. The activation energy (Ea) of the COFs is calculated using the Arrhenius equation as 50.71 kJ moL−1. The COFs are capable of sensitive color changes and offer a broad temperature tracking range, thereby demonstrating their application potential for the monitoring of temperature and time exposure history during production, transportation, and storage. This excellent performance thermal history indicator also shows promise for expanding the application field of COFs.  相似文献   
6.
Lithium metal anodes (LMAs) are promising for next-generation batteries but have poor compatibility with the widely used carbonate-based electrolytes, which is a major reason for their severe dendrite growth and low Coulombic efficiency (CE). A nitrate additive to the electrolyte is an effective solution, but its low solubility in carbonates is a problem that can be solved using a crown ether, as reported. A rubidium nitrate additive coordinated with 18-crown-6 crown ether stabilizes the LMA in a carbonate electrolyte. The coordination promotes the dissolution of NO3 ions and helps form a dense solid electrolyte interface that is Li3N-rich which guides uniform Li deposition. In addition, the Rb (18-crown-6)+ complexes are adsorbed on the dendrite tips, shielding them from Li deposition on the dendrite tips. A high CE of 97.1% is achieved with a capacity of 1 mAh cm−2 in a half cell, much higher than when using the additive-free electrolyte (92.2%). Such an additive is very compatible with a nickel-rich ternary cathode at a high voltage, and the assembled full battery with a cathode material loading up to 10 mg cm−2 shows an average CE of 99.8% over 200 cycles, indicating a potential for practical use.  相似文献   
7.
LiFePO4 modified by N-doped graphene (NG) with a three-dimensional conductive network structure was synthesized via a one-step in situ hydrothermal method. The effects of N amount of NG on the phase structure, morphology, and electrochemical properties of LiFePO4 are investigated in this study. X-ray diffraction (XRD) results show that doping suitable N amounts in NG do not alter the crystal structure of LiFePO4, and scanning electron microscopy (SEM) images show that NG can slightly reduce the particle size of LiFePO4. The high-resolution transmission electron microscopy (HRTEM) results show that the LiFePO4 particles are well covered and connected by NG. The electrochemical performance confirms that LiFePO4 modified by 20% N-doped graphene (named LFP/NG-4) displays a perfect specific capacity of 166.6 mAh·g?1 at a rate of 0.2C and can reach 125 mAh·g?1 at a rate of 5 C. Electrochemical impedance spectroscopy (EIS) results illustrate that the charge transfer resistance value of the LFP/NG-4 composite is only 58.6 Ω, which is very low compared with LiFePO4. Cyclic voltammetry (CV) tests indicate that the addition of 20% N-doped graphene can effectively reduce electrode polarization and improve reversibility. The LFP/NG-4 composite with a three-dimensional conductive network structure can be regarded as a promising cathode material for Li-ion batteries.  相似文献   
8.
Suspension plasma spraying (SPS) as a potential technique to prepare thermal barrier coatings (TBCs) has been attracting more and more attention. However, most reports on SPS were carried out in the atmosphere. Given the unique features of in-flight particles and plasma jets under low pressure, the resulting coatings are expected to be different from those under atmospheric pressure. In this article, yttria-stabilized zirconia (YSZ) thermal barrier coatings were prepared using suspension plasma spraying under different environmental pressures. The results show that as the environmental pressure decreased, the column-like structural coating turned into a vertical crack segmented structure, as well as a dramatic decrease in surface roughness. More nanoparticle agglomerates were formed in the coating under lower environmental pressures. The real porosity of the coating increased with a decrease in environmental pressure.  相似文献   
9.
Osteogenic glue that reproduces the natural bone composition represents the final frontier of orthopedic adhesives with the potential to revolutionize surgical strategies against comminuted fractures. However, it is difficult to achieve an all-in-one formula, which could provide flexible and reliable adhesiveness while avoiding interfering with or even promoting the healing of glued fractures. Herein, an osteogenic glue characterized by inorganic-in-organic integration between amine-modified mesoporous bioactive glass nanoparticles (AMBGN) and bioadhesive gelatin-dextran network (GelDex) is introduced as an all-in-one tool to flexibly adhere and splice bone fragments and subsequently guide fracture healing during degradation. Relying on such integration, a 4-fold improvement in cohesiveness is presented, followed by a nearly 5-fold enhancement in adhesive strength in ex vivo porcine bone samples. The reversible and re-adjustable adhesiveness also enables glue to effectively splice intricate fragments from highly comminuted fractures in the rabbit radius in an in vivo environment. Moreover, well-preserved organic–inorganic integrity during degradation of the glue guides sustained interfacial osteogenesis and achieve satisfying healing outcomes in glued fractures, as observed by the 2-fold improvement in biomechanical and radiological performance compared with commercially available cyanoacrylate adhesives. The current findings propose an all-in-one solution for the fixation of bone fragments during surgery.  相似文献   
10.

This paper deals with a class of fast diffusion p-Laplace equation with logarithmic non-linearity in a bounded smooth domain with homogeneous Dirichlet boundary condition. By using energy estimates and some ordinary differential inequalities, we study the conditions on extinction and non-extinction of global solutions. The results of this paper extend and complete the previous studies on this equation.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号